我们的现场实拍视频将带您走进304不锈钢焊管厂家广受好评产品的世界,让您亲眼见证其优点和特点,为您的购买决策提供有力支持。


以下是:焦作温县304不锈钢焊管厂家广受好评的图文介绍



冷却水本身的主要成分分为阴离子和阳离子两大类,阴离子会在阳极溶解处聚集吸附,由于竞争吸附的原因,水中其它阴离子有可能阻碍Cl-在不锈钢管表面聚集吸附,如果某阴离子对不锈钢管钝化膜没有破坏作用,则该阴离子就可能有缓蚀作用;如果某阴离子对不锈钢管钝化膜有破坏作用,则该阴离子就可能与Cl-一样有腐蚀促进作用。因此冷却水中阴离子对不锈钢管点蚀特性的影响是研究的重点。冷却水成分的影响冷却水中主要的阴离子有Cl-、SO42-、HCO3-和NO3-,主要的阳离子有Na+、K+、Ca2+、Mg2+。卤素离子是主要的侵蚀性离子,多数冷却水中F-浓度低于1mg/L,没有列入检测项目,但是也有部分地区冷却水中F-浓度可达几个毫克/升以上,F-对凝汽器不锈钢管点蚀影响的研究很少,尚未见到具体的实验数据。溴离子有点蚀作用,冷却水中一般没有,加入含溴杀菌剂时,应作为水处理剂的影响来考虑。碘离子在冷却水中几乎没有,可以不考虑。冷却水的pH通常在6.5~8.5,HO-的浓度通常小于4×10-6mol/L,在此范围内对不锈钢管点蚀电位影响较小,但是在较高浓度时(pH9~12)对不锈钢管有较强的缓蚀作用。Cl-和SO42-对不锈钢管点蚀影响的研究较多,已有结论:Cl-是主要的腐蚀因子,SO42-对不锈钢管具有缓蚀性。因此本文主要研究阴离子F-、HCO3-和NO3-对不锈钢管点蚀性能的影响。点蚀电位的测试系统和方法见4.1和4.3.1。




福伟达管业(温县分公司)经过全体员工长期以来坚持不懈的努力,现已发展成为一家集设计开发、生产加工、销售、服务为一体的高新技术企业;是中国专业从事 310S不锈钢管等制造商之一。



一种不锈钢管可在许多介质中具有良好的耐蚀性,但在另外某种介质中,却可能因化学稳定性低而发生腐蚀。所以说,一种不锈钢管不可能对所有介质都耐蚀。 金属的腐蚀,按机理可分为特理腐蚀、化学腐蚀与电化学腐蚀三种。生活实际、工程实际中的金属腐蚀,绝大多数都属于电化学腐蚀。 不锈钢管的主要腐蚀形式有均匀腐蚀(表面腐蚀)、点腐蚀、缝隙腐蚀、晶间腐蚀和应力腐蚀等。 均匀腐蚀是指接触腐蚀介质的金属表面全部产生腐蚀的现象。根据不同的使用情况对耐蚀提出不同的指标要求,一般可分为两大类: 1. 不锈钢管 指在大气及弱腐蚀介质中耐蚀的钢。腐蚀速率小于0.01mm/年的,认为是"完全耐蚀";腐蚀速率小于0.1mm/年的,认为是"耐蚀"的。 2. 耐蚀钢 指在各种强烈腐蚀介质中能耐蚀的钢。 点腐蚀是指在金属材料表面大部分不腐蚀或腐蚀轻微而分散发生高度的局部腐蚀,常见蚀点的尺寸小于1.00mm,深度往往大于表面孔径,轻者有较浅的蚀坑,严重的甚至形成穿孔。 缝隙腐蚀缝隙腐蚀是指在金属构件缝隙处发生斑点状或溃疡形的宏观蚀坑,这是局部腐蚀的一种。 晶间腐蚀是一种有选择性的腐蚀破坏,它与一般选择性腐蚀不同之处在于,腐蚀的局部性是显微尺度的,而宏观上不一定是局部的。 不锈钢管和碳钢的物理性能数据对比碳钢的密度略高于铁素体和马氏体型不锈钢管,而略低于奥氏体型不锈钢管;电阻率按碳钢、铁素体型、马氏体型和奥氏体型不锈钢管排序递增;线膨胀系数大小的排序也类似,奥氏体型不锈钢管 而碳钢小;碳钢、铁素体型和马氏体型不锈钢管有磁性,奥氏体型不锈钢管无磁性,但其冷加工硬化生成成氏体相变时将会产生磁性,可用热处理方法来这种马氏体组织而恢复其无磁性。




不同的不锈钢管的切削性能有很大的差异。一般所说不锈钢管的切削性能比其他钢差,是指奥氏体型不锈钢管的切削性能差。这是由于奥氏体不锈钢管的加工硬化严重,导热系数低造成的。为此在切削过程中需使用水性切削冷却液,以减少切削热变形。特别是当焊接时的热处理不好时,无论是怎样提高切削精度,其变形也是不可避免的。其他类型如马氏体型不锈钢管、铁素体型不锈钢管等不锈钢管的切削性能只要不是淬火后进行切削,那么与碳素钢没有太大的不同。但两者均是含碳量越高则切削性能越差。沉淀硬化型不锈钢管由于其不同的组织和处理方法而显示不同的切削性能,但一般来说其切削性能在退火状态下与同一系列及同一强度的马氏体型不锈钢管和奥氏体型不锈钢管相同。 欲改善不锈钢管的切削性能,与碳素钢一样可通过添加硫、铅、铋、硒和碲等元素来实现。其中添加如硫硒和碲等元素可减轻工具的磨损,添加铅和铋等元素可改善切削状态。 虽然添加硫可改善不锈钢管的切削性能,但是由于它是以MnS化合物的形式存在于钢中,所以使得耐蚀性明显下降。为解决这个问题,通常是添加少量的钼或铜。 二、淬透性 对于马氏体铬镍不锈钢管,一般需进行淬火-回火热处理。在这个过程中不同的合金元素及其添加量对淬透性有不同的影响。 对马氏体型不锈钢管进行淬火时是从925-1075℃温度进行急冷。由于相变速度低,因此无论是油冷还是空泠都可得到充分的硬化。同样在必须进行的回火过程中,由于回火条件的不同可得到大范围的不同力学性能。 在马氏体铬不锈钢管中,由于铬的添加可提高铁碳合金的淬透性,因而在需要进行淬火钢中得到广泛的应用。铬的主要作用是可以降低淬火的临界冷却速度,使钢的淬透性得到明显的提高。从C曲线来看,由于铬的添加使奥氏体发生转变的速度减慢,C曲线明显右移。 在马氏体铬镍不锈钢管中,镍的添加可提高钢的淬透性和可淬透性。含铬接近20%的钢中若不添加镍则无淬火能力。添加2%-4%的镍可恢复淬火能力。但其中镍的含量不能过高,否则过高的镍含量不仅会扩大r相区,而且还会降低Ms温度,这样使钢成为单相奥氏体组织也丧失了淬火能力。选择适当的镍含量,可提高马氏体不锈钢管的回火稳定性,并降低回火软化程度。



针对某化工企业使用的06Cr19Ni10奥氏体不锈钢换热管发生的腐蚀断裂现象,利用内窥镜检测手段,对断裂换热管进行了分析。发现不锈钢管管的断裂深度基本在4.6m到4.9m处,与结垢位置一致,且断裂面整齐,主要分布在管束外侧。换热管内壁存在腐蚀坑,且腐蚀面积很大,腐蚀部位变成深褐色。除此之外,换热管内壁在4.6m到4.9m存在沟槽,主要由于壳程温度高于管程,壳程伸长量大于管束,受拉力达到强度极限导致开裂破坏。经过综合分析,指出该不锈钢换热管开裂是在管壳程温差造成的拉应力与化学腐蚀共同作用下形成,并给出了相应的和改进措施。换热器广泛应用于现代石油、化工、冶金、供暖及电力等行业,主要通过控制温度以满足应用需求,保障生产。当换热器在腐蚀性环境下工作时,换热管一般选用奥氏体不锈钢。在运行过程中,换热器同时受到压力、温差及腐蚀性介质等因素的共同作用,易出现腐蚀开裂问题,轻则造成设备无法运行,重则停产,甚至造成人员伤亡。近年来,环保理念的,促进了社会对能源清洁利用的追求,进而加速了新型煤化工企业的发展。对煤化工企业而言,换热设备的平稳运行,对设备设计和企业稳定平稳运行至关重要。因此,对失效换热器及其零部件进行缺陷分析,查明其产生的原因,对于保证生产生活具有重要作用。




点击查看福伟达管业(温县分公司)的【产品相册库】以及我们的【产品视频库】